Automated Mechanism Design without Money via Machine Learning
نویسندگان
چکیده
We use statistical machine learning to develop methods for automatically designing mechanisms in domains without money. Our goal is to find a mechanism that best approximates a given target function subject to a design constraint such as strategy-proofness or stability. The proposed approach involves identifying a rich parametrized class of mechanisms that resemble discriminantbased multiclass classifiers, and relaxing the resulting search problem into an SVM-style surrogate optimization problem. We use this methodology to design strategy-proof mechanisms for social choice problems with single-peaked preferences, and stable mechanisms for two-sided matching problems. To the best of our knowledge, ours is the first automated approach for designing stable matching rules. Experiments on synthetic and real-world data confirm the usefulness of our methods.
منابع مشابه
Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملA General Statistical Framework for Designing Strategy-proof Assignment Mechanisms
We develop a statistical framework for the design of a strategy-proof assignment mechanism that closely approximates a target outcome rule. The framework can handle settings with and without money, and allows the designer to employ techniques from machine learning to control the space of strategy-proof mechanisms searched over, by providing a rule class with appropriate capacity. We solve a sam...
متن کاملSample Complexity of Automated Mechanism Design
The design of revenue-maximizing combinatorial auctions, i.e. multi-item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders’ valuations are drawn from an underlying distribution and that the auction designer has perfect knowled...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملX Efficient Market Making via Convex Optimization, and a Connection to Online Learning
We propose a general framework for the design of securities markets over combinatorial or infinite state or outcome spaces. The framework enables the design of computationally efficient markets tailored to an arbitrary, yet relatively small, space of securities with bounded payoff. We prove that any market satisfying a set of intuitive conditions must price securities via a convex cost function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016